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Abstract

A plasticity model was developed to predict the behavioral characteristics of concrete in multiaxial compression. To
extend the applicability of the plasticity model to concrete in various stress states, a new model that uses multiple failure
criteria was attempted. A stress was decomposed into one volumetric and two deviatoric components orthogonal to
each other. Independent failure criterion was provided for each stress component. To satisfy the three failure criteria,
the plasticity model using multiple failure criteria was implemented. To describe dilatancy due to compressive damage,
a non-associative flow rule was proposed. The proposed model was compared with various existing test results. The
comparisons show that it predicted most of the experimental results well by applying the three independent failure
criteria.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

For nonlinear analysis of concrete, various material models—plasticity models, damage models, dam-
age-plasticity models, microplane models, and so on—have been developed. Based on numerous theoretical
studies and test results, these models have been used to accurately describe the behavioral characteristics of
concrete in various compressive stress states.
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Concrete shows various behavioral characteristics depending on its stress states. In uniaxial compres-
sion, the initial response is almost linear, and as the compressive stress reaches its maximum, microcracking
causes concrete to behave nonlinearly. In the post-peak behavior, the concrete volume increases because of
the unstable propagation of the microcracks. In biaxial compression, Kupfer et al. (1969) reported that
maximum strength of concrete increases up to 125% of the uniaxial strength depending on the ratio of
the two orthogonal stresses. Comparable strength enhancement was also confirmed in other biaxial com-
pression tests (Liu et al., 1972; Nelissen, 1972; Tasuji et al., 1978). In triaxial compression tests (Kotsovos
and Newman, 1978; Wang et al., 1987; Smith et al., 1989; Bellotti and Rossi, 1991; Xie et al., 1995; Imran
and Pantazopoulou, 1996; Li and Ansari, 1999; Sfer et al., 2002), the strength and ductility of concrete
significantly increase due to the confinement effect (Fig. 1).

To describe these behavioral characteristics of concrete in compression, the plasticity model was fre-
quently used because of its simple and direct representation of multiaxial stress. Since Chen and Chen
(1975), many researchers have attempted to extend the application of the plasticity model to various stress
states of concrete. To predict concrete strength in various stress states, several failure criteria defined with
stress invariants were developed: the 3-parameter criterion (Willam and co-workers), 4-parameter criterion
(Ottosen, Hsieh-Ting-Chen), 5-parameter criterion (Willam–Warnke), and others (Chen, 1982; Menetrey
and Willam, 1995). Also, to describe deformational characteristics of concrete in ultimate stress state, var-
ious non-associative flow rules were developed (Pramono and Willam, 1989; Kang and Willam, 1999;
Imran and Pantazopoulou, 2001; Grassl et al., 2002).

With these sophisticated failure criteria and the flow rule, recent plasticity models have described well the
behavior of concrete in multiaxial compression (Imran and Pantazopoulou, 2001; Grassl et al., 2002). How-
ever, existing plasticity models using a single failure criterion is limited in describing the complex behavioral
characteristics of concrete. Single failure criterion and the corresponding plastic strain are not sufficient to
accurately describe the complex behavior of concrete varying according to the stress combinations. Usually,
their application is limited to test data used for calibrations of the models. For good agreement with other
test results, the parameters used in the existing plasticity models should be adjusted. Therefore, a new model
which is able to predict various test results without adjustment of other variables except the basic variables
such as the uniaxial compressive strength and the corresponding strain is needed to extend the applicability
of the plasticity model.
Fig. 1. Test results—triaxial compression.
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Bazant and co-workers developed the microplane model to overcome such disadvantages of the plastic-
ity model (Bazant and Prat, 1988a). In the microplane model, the macroscopic stress representing a spher-
ical volume of concrete is calculated by integrating the volumetric, deviatoric, and tangential microscopic
stresses defined in the microplanes composing the spherical surface. Numerical calculations can be easily
performed due to the simple microscopic stress–strain relations. Various behavioral characteristics of con-
crete can be accurately described by the combination of the microscopic stress–strain relations defined in
multi-oriented microplanes. The accuracy of the microplane model confirms that independent stress–strain
relationships should be applied to the decomposed volumetric, deviatoric, and tangential components.
However, the microplane model has several shortcomings: The orientation of the tangential stress compo-
nent is not clearly defined; variables still need to be adjusted for several tests; and the specific strength of
concrete intended might not be predicted exactly because various stress–strain relations defined in the mul-
ti-oriented microplanes are used in calculating the macroscopic stress.

In the present study, incorporating the advantages of the microplane model, a plasticity model was
developed to describe the behavioral characteristics of concrete in various compressive stress states. The
decomposition of volumetric and deviatoric components and the related formulations used in the micro-
plane model were introduced in the framework of the plasticity theory.
2. Definition of stress components

For a stress tensor rij, stress invariants are defined as I1 = dijrij, J2 = sijsij/2, and J3 = sijsjkski/3. sij is the
deviatoric stress tensor: sij = rij � rkkdij/3. dij is the Kronecker symbol defined as dij = 1 if i = j and dij = 0 if
i 5 j. Figs. 2 and 3 show stress components defined in the principal stress space and deviatoric plane,
respectively. In the figures, r1 > r2 > r3, where principal compressive stresses r1, r2, and r3 are negative.
In general, a stress is represented by the hydrostatic stress invariant n, the deviatoric stress invariant q,
and the deviatoric polar angle h, which are defined with stress invariants: n ¼ I1=

ffiffiffi
3

p
, q ¼

ffiffiffiffiffiffiffi
2J 2

p
, and

cos 3h ¼ ð3
ffiffiffi
3

p
J 3Þ=ð2J 3=2

2 Þ. h = p/3 represents the uniaxial compressive stress and h = 0 represents the equal
biaxial compression. The hydrostatic stress invariant n is an important index which determines the enhance-
ment of strength and ductility in multiaxial compression.

In the present study, unlike the general definition mentioned, a compressive stress is presented with three
orthogonal components. The proposed approach is similar to the microplane model in that a stress is
Fig. 2. Stress components in principal stress space.



Fig. 3. Stress components in deviatoric plane.
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decomposed into three independent stresses. The three components p, q, and r used in the proposed model
are defined as (see Figs. 2 and 3):
p ¼ jI1=
ffiffiffi
3

p
j ð1aÞ

q ¼ j
ffiffiffiffiffiffiffi
2J 2

p
cosðp=3� hÞj ð1bÞ

r ¼ j
ffiffiffiffiffiffiffi
2J 2

p
sinðp=3� hÞj ð1cÞ
A stress vector is defined by the combination of three independent vectors related to p, q, and r

(0P r1 P r2 P r3):
ðr1; r2; r3Þ ¼ p � 1ffiffiffi
3

p ;� 1ffiffiffi
3

p ;� 1ffiffiffi
3

p
� �

þ q
1ffiffiffi
6

p ;
1ffiffiffi
6

p ;� 1ffiffiffi
6

p
� �

þ r
1

2
;� 1

2
; 0

� �
ð2Þ
Component p is identical to the hydrostatic stress invariant n representing the volumetric part, and af-
fects the enhancement of strength and ductility in multiaxial compression. Components q and r representing
the deviatoric part are related to the deviatoric stress invariant q and the deviatoric polar angle h. Compo-
nent q presents behavioral characteristics of concrete in uniaxial compression, and is identical to the devi-
atoric stress invariant q in uniaxial compression (h = p/3). Component r presents behavioral characteristics
of concrete in biaxial or triaxial compression and reaches the maximum value in equal biaxial compression
(h = 0).

As such, a compressive stress is composed of three components representing behavioral characteristics of
concrete in uni-, bi-, and triaxial compressions. The behavioral characteristics of concrete were already clar-
ified through existing experimental and theoretical studies (Chen, 1982; Bazant and Prat, 1988a,b). There-
fore, three orthogonal components p, q, and r can be clearly defined to describe such behavioral
characteristics of concrete.
3. Failure criteria

As mentioned, a stress is composed of three orthogonal components—one volumetric and two deviatoric
components—and the independent failure criteria are applied on these three stress components. To apply
these multiple failure criteria, the plasticity model, previously developed by Park and Klingner (1997), was
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modified. In the proposed plasticity model, three independent failure criteria for the orthogonal compo-
nents must be satisfied:
f1 ¼ f2 ¼ f3 ¼ 0 ð3Þ

where subscripts �1�, �2�, and �3� indicate the orthogonal components p, q, and r, respectively. Total plastic
strain vector ep is defined as the sum of the plastic strain vectors epi related to the corresponding failure
criteria: ep ¼

P3
i epi.

The failure criteria are defined as
f1 ¼ r̂1ðI1Þ � r1ðêp1Þ ¼ 0 ð4aÞ

f2 ¼ r̂2ðJ 2; J 3Þ � r2ðêp1; êp2Þ ¼ 0 ð4bÞ

f3 ¼ r̂3ðJ 2; J 3Þ � r3ðêp1; êp3Þ ¼ 0 ð4cÞ

where r̂i is the effective stress defined with stress invariants and ri is the failure surface function defined by a
function of equivalent plastic strain êpi. Each effective stress is identical to the stress component p, q, or r
defined in Eq. (1).
r̂1ðI1Þ ¼ jI1=
ffiffiffi
3

p
j ð5aÞ

r̂2ðJ 2; J 3Þ ¼ j
ffiffiffiffiffiffiffi
2J 2

p
cosðp=3� hÞj ð5bÞ

r̂3ðJ 2; J 3Þ ¼ j
ffiffiffiffiffiffiffi
2J 2

p
sinðp=3� hÞj ð5cÞ
The effective stress r̂1 represents the hydrostatic stress, and r̂2 and r̂3 represent the deviatoric stress
defined in the deviatoric plane.

r1, r2, and r3 present the failure surfaces for the corresponding effective stresses. According to existing
test results, an increase in the hydrostatic stress induces the expansion of the failure surface in the deviatoric
plane. Fig. 4 shows n–q relations obtained from laterally confined triaxial compression tests (h = p/3), and
their average compressive meridian. As shown in the figure, the failure surface linearly increases in low
hydrostatic stress, but its increasing rate decreases in high hydrostatic stress. This is also observed in
Fig. 1 showing the variations of the maximum compressive strength according to the lateral confining
stress. The failure surface for the hydrostatic part r1 in Eq. (4a) can be defined by the volumetric equivalent
Fig. 4. Test results in n–q plane.
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plastic strain êp1. On the other hand, to describe dependency of the failure surface on hydrostatic stress, the
failure surfaces for the deviatoric part r2 and r3 in Eqs. (4b) and (4c) should be defined by the volumetric
equivalent plastic strain êp1 as well as the deviatoric equivalent plastic strains êp2 and êp3.
4. Definition of failure surface

In the classical plasticity theory, the yield surface is defined, and plastic deformation begins to develop
after a stress reaches the yield surface. In the proposed model, the elastic and plastic regions are not sep-
arated and continuous transition of failure surfaces defined with equivalent plastic strains is assumed to
occur from the initial loading. Failure surfaces ri are defined by the same functions as used for the
volumetric and deviatoric stress–strain relations in the microplane model (Bazant and Prat, 1988b). In
the proposed model, the failure surface functions are defined with the equivalent plastic strains rather than
the microscopic strains (Fig. 5).
r1

f 0
c

¼ Ec

1� 2m
1þ êp1

a

� ��s

þ êp1
b

� �t� �
êp1 ð6aÞ

r2

f 0
c

¼ Ec

1þ m
exp � êp2

c2

� �m2
� �

êp2 ð6bÞ

r3

f 0
c

¼ Ec

1þ m
exp � êp3

c3

� �m3
� �

êp3 ð6cÞ
Coefficients used in the failure surface functions were determined based on various test results. Since fail-
ure surface r1 is related to the hydrostatic stress, coefficients in r1 were determined from the results of the
hydrostatic triaxial test (Green and Swanson, 1973): a = 2.5 · 10�5, b = 2.5, s = 0.8, and t = 1.15. These
(a) (b)

(c)

Fig. 5. Failure surfaces: r1, r2, and r3.
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values are also valid for other hydrostatic triaxial tests. Since failure surface r2 is related mainly to uniaxial
compressive stress, coefficients used in r2 were determined with uniaxial compressive strength and the cor-
responding strain: In uniaxial compression, when a stress reaches the maximum strength f 0

c , the effective
stress r̂2 becomes

ffiffiffi
6

p
f 0
c=3 (see Eq. (2)), which should be the maximum of r2 (Fig. 5(b)). Using this condi-

tion, the coefficients in Eq. (6b) are defined as
m2 ¼ � 1

ln ð1þmÞ
Ec

ffiffi
6

p

3
a2

b2 êsp2

� � ð7aÞ

c2 ¼ b2êsp2ð1=m2Þ1=m2 ð7bÞ

a2 and b2 are the magnification factors representing enhanced strength and ductility of concrete in multi-
axial compression, respectively. In uniaxial compression, a2 = b2 = 1. The value of êsp2, which is the equiv-
alent plastic strain corresponding to the maximum uniaxial compressive strength, was set to 0.0012 based
on the results of uniaxial compression test (Kupfer et al., 1969).

In the same manner, coefficients used in failure surface r3 were determined using maximum strength in
equal biaxial compression 1:15f 0

c (Kupfer et al., 1969).
m3 ¼ � 1

ln ð1þmÞ
Ec

1:15ffiffi
2

p a3
b3 êsp3

� � ð8aÞ

c3 ¼ b3êsp3ð1=m3Þ1=m3 ð8bÞ

a3 and b3 are the magnification factors representing enhanced strength and ductility of concrete in multi-
axial compression, respectively. In equal biaxial compression, a3 = b3 = 1. The value of êsp3 corresponding
to the maximum strength in equal biaxial compression was set to 0.0025 based on the results of biaxial com-
pression test (Kupfer et al., 1969).

A concrete shows enhanced strength and ductility in multiaxial compression, particularly in triaxial com-
pression. Based on recent test results for triaxial compression, Imran and Pantazopoulou (2001) proposed
the formula for laterally confined compressive strength by modifying the Hsieh-Ting-Chen failure criterion.
Fig. 6. Comparison of proposed strength equations and test results.
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rcc

f 0
c

¼ rl

f 0
c

þ 0:021�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:043� 10:571

rl

f 0
c

r
ð9Þ
where rl is the confining compressive stress orthogonal to the maximum principal compressive stress
(r3 < r2 = r1( = rl) < 0), and rcc is the compressive strength enhanced by the confining compressive stress
(if rl = 0, rcc ¼ �f 0

c ). As shown in Fig. 6, Eq. (9) agrees relatively well with test results for various compres-
sive strengths and lateral confining stresses. In the present study, based on Eq. (9), a formula addressing the
confining effect was derived.

Unlike the traditional plasticity models, in the proposed model, the confining effect was presented in the
failure surface function rather than in the effective stress. For this, the function for the confining effect
should be defined by the volumetric plastic strain rather than the hydrostatic stress (lateral confining stress)
(Fig. 7). Based on the results of laterally confined triaxial compression test (Kotsovos and Newman, 1978;
Smith et al., 1989; Bellotti and Rossi, 1991; Xie et al., 1995; Imran and Pantazopoulou, 1996; Li and
Ansari, 1999; Sfer et al., 2002), the enhanced strength in multiaxial compression was defined as
rcc

f 0
c

¼ �1� 0:575ðK êp1 � 0:45Þ0:315 ð10Þ
where K(=Ec/3(1 � 2m)) is the bulk modulus. From Eq. (10), the strength magnification factor a2 in Eq. (7)
was defined as
a2 ¼ 1þ 0:575ðK êp1 � 0:45Þ0:315 ð11Þ

Fig. 6 compares the analytical results by Eq. (11) with test results. The analytical results obtained using

Ec = 29,000MPa and m = 0.15 agree well with the test results.
Similarly, the strain magnification factor b2 was defined as
b2 ¼ 1þ 8:4ðK êp1 � 0:45Þ0:25 ð12Þ

Eq. (12) was determined by comparisons with the laterally confined triaxial tests (Kotsovos and

Newman, 1978; Smith et al., 1989; Bellotti and Rossi, 1991; Xie et al., 1995; Imran and Pantazopoulou,
1996; Li and Ansari, 1999; Sfer et al., 2002). In this equation, the enhancement of ductility due to hydro-
static stress is described indirectly by the function of equivalent volumetric strain.
Fig. 7. Strength enhancement vs equivalent volumetric plastic strain.
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Based on the results of triaxial compression tests by Wang et al. (1987), the strength magnification factor
a3 and the strain magnification coefficient b3 for the failure surface r3 were defined as
a3 ¼ 1þ 0:389ðK êp1 � 2:17Þ0:315 ð13Þ

b3 ¼ 1þ 5:95ðK êp1 � 2:17Þ0:25 ð14Þ

As mentioned, magnification factors a2, a3, b2, and b3 for the deviatoric part were determined only by the

equivalent volumetric plastic strain êp1. The enhancement in strength and ductility of concrete due to multi-
axial compression is described by the failure surfaces defined with these coefficients. In the proposed model,
only the basic properties of concrete—uniaxial compressive strength, elastic modulus, and Poisson�s ratio—
will be used in predicting the test results, without arbitrarily adjusting other coefficients.
5. Plastic strain

Plastic strains are defined by the gradient of the plastic potential function, and the related rule is defined
as the plastic flow. Results of the uniaxial and multiaxial compressive tests clearly show non-association
characteristics of the volumetric strain (Smith et al., 1989; Sfer et al., 2002). In the test results, the volumet-
ric part of the plastic strain rapidly changes from contraction to dilatation as the compressive damage of
concrete progresses and strength softening occurs after the peak stress. The associative flow rule defining
the volumetric strain proportionally to the hydrostatic stress cannot describe the dilatation due to compres-
sive damage. Existing plasticity models use various non-associative flow rules (Pramono and Willam, 1989;
Kang and Willam, 1999; Imran and Pantazopoulou, 2001; Grassl et al., 2002). In the present study, a
simple form of the non-associative flow is proposed.

As shown in Fig. 5, the volumetric function presents continuously increasing stress. This means that
the compressive damage of concrete and the resulting decrease in compressive stress occur due to sof-
tening of the deviatoric stresses. The softening of deviatoric stress is accompanied by significant increase
in the deviatoric equivalent plastic strain. Thus, to describe the increase in the volumetric strain due to
compressive damage, the volumetric plastic strain should be related to the deviatoric equivalent plastic
strain.

For this purpose, the plastic potentials used to define plastic strains are defined as
g1 ¼ f1 ð15aÞ

g2 ¼ jf1 þ f2 ð15bÞ

g3 ¼ jf1 þ f3 ð15cÞ
The volumetric plastic potential g1 is identical to the first failure criterion f1. To relate the deviatoric equiv-
alent plastic strain to the volumetric strain, the deviatoric plastic potentials g2 and g3 are defined as linear
combinations of the failure criteria for the volumetric part and the deviatoric part. Based on the results of
various compression tests (Kupfer et al., 1969; Tasuji et al., 1978; Kotsovos and Newman, 1978; Imran and
Pantazopoulou, 1996; van Mier, 1986), coefficient j was defined as the ratio of the deviatoric to hydrostatic
invariants: j ¼ �J 2=I21.

Based on the proposed non-associative flow rule, incremental plastic strain vector for each failure crite-
rion is defined as
depi ¼ dki
ogi
or

� �
ð16Þ
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where dki = incremental plastic strain multiplier. Incremental equivalent plastic strain dêpi is defined with
the incremental plastic strain vector.
dêpi ¼ ½ð2=3Þðdepi � depiÞ�
1=2 ¼ Cidki ð17Þ
where Ci = equivalent plastic potential gradient, and dki = incremental plastic strain multiplier. Total
equivalent plastic strain êpi is defined as the sum of the incremental equivalent plastic strain
dêpi : êpi ¼

R
dêpi.

By using Eqs. (15b), (15c), (16) and (17), the increase in the equivalent deviatoric plastic strains causes
dilatation (minus increase in volumetric plastic strain).
6. Numerical calculation

In nonlinear finite element analyses, it is necessary to obtain the current stress satisfying all the failure
criteria in Eq. (4) for given total strains or strain increments. In a plasticity model, stresses satisfying all the
failure criteria for given strains cannot be directly calculated. Therefore, a typical elastic-predictor–plastic-
corrector algorithm, in which the stresses for given strains are obtained by iterative calculations with
initially predicted stresses in each load step, was applied in the present study (Crisfield, 1991; Park and
Klingner, 1997). For the iterative procedure, a first-order Taylor expansion of the failure criterion is given
as
f 1
i ¼ f 0

i þ of 0
i

or0

� �T

Dr0 þ
X3
j¼1

of 0
i

oê0pj
Dê0pj

 !
¼ 0; ð18Þ
where superscripts ‘‘0’’ and ‘‘1’’ indicate current and next iteration, respectively, and the subscript indicates
the failure criterion (i = 1, 2, 3).

The stress increments in the current iteration are defined as
Dr0 ¼ DðDe0eÞ ¼ DðDe0 � De0pÞ ¼ D De0 �
X3
i¼1

De0pi

 !
¼ D De0 �

X3
i¼1

og0i
or0

Dk0i

� �" #
: ð19Þ
Since elastically predicted stresses are developed only in the initial iteration of each load step, De0 = 0 in
the subsequent iterations. The plastic strain rate multiplier can be obtained by inserting Eq. (19) into Eq.
(18).
ADk0 ¼ F 0; ð20Þ� �

where Aij ¼ of 0i

or0

� �T
D

og0j
or0

� �
þ of 0i

oê0pj
Cj;Dk

0 ¼ hDk01 Dk02 Dk03 i
T
; and F ¼ h f 0

1 f 0
2 f 0

3 i
T.

Using Eq. (20), the plastic strain multiplier for each failure criterion can be obtained. Then, stresses and
equivalent plastic strains in the next iteration can be calculated.
r1 ¼ r0 �
X3
i¼1

ðDDe0piÞ ¼ r0 �
X3
i¼1

D
og0i
or0

� �
Dk0i

� �
: ð21Þ

ê1pi ¼ ê0pi þ CiDk
0
i : ð22Þ
Through the iterative procedure in Eqs. (18)–(22), the stresses elastically predicted in the initial iteration
of each load step are relaxed by the development of plastic strains. If the failure criteria in Eq. (18) updated
with the new stress components are not satisfied, this relaxation procedure is applied again.
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For fast and stable convergence in nonlinear calculations, the tangent stiffness matrix needs to be con-
sistent with the iterative procedure mentioned. The tangent stiffness matrix for each iterative step can be
obtained by differentiating Eqs. (18)–(22). Stress components in Eq. (19) are differentiated as:
_r ¼ D_e�
X3
i¼1

_kiD
ogi
or

� �� �
�
X3
i¼1

DkiD
o2gi
or2

� �
_r

� �
; ð23aÞ
Fig. 8. Uniaxial test—Hognestad et al.

Fig. 9. Uniaxial test—Desayi and Krishnan.
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and
Fig.
_r ¼ I þ
X3
i¼1

DkiD
o2gi
or2

� �� �( )�1

D _e�
X3
i¼1

_ki
ogi
or

� �" #
¼ R _e�

X3
i¼1

_ki
ogi
or

� �" #
: ð23bÞ
To satisfy the consistency condition, the expansion in Eq. (18) should be eliminated.
_f i ¼
ofi
or

� �T

_rþ
X3
j¼1

ofi
oêpj

_̂epj

� �
¼ 0: ð24Þ
Using Eqs. (23) and (24),
B _k ¼ aTR_e; ð25Þ
where Bij ¼ ofi
or

� �T
R

ogj
or

� �
þ ofi

oêpj

� �
Cj; _k ¼ _k1 _k2 _k3

� 	T
; and a ¼ of1

or
of2
or

of3
or

D E
.

(a)

(b)

10. Uniaxial and biaxial test—Kupfer et al.: (a) principal strain–principal stress; and (b) volumetric strain–principal stress.
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From (23) and (25), the consistent tangent matrix can be derived as
Fig.
DT ¼ R� RaB�1aTRT: ð26Þ
7. Verification

For verification, the numerical results obtained by the proposed model were compared with existing test
results for various stress states and material properties. The numerical results on the uniaxial compressive
behavior of concrete with various compressive strengths and elastic moduli, were compared with the test
results by Hognestad et al. (1955) and Desayi and Krishnan (1964). In the test by Hognestad et al.
(1955), f 0

c ¼ 20, 34.5, 46, and 51MPa and Ec = 18,700, 21,550, 26,900, and 31,600MPa. In the test by
zDesayi and Krishnan (1964), f 0

c ¼ 21:1, 31.2, and 50MPa and Ec = 25,000, 32,000, and 35,700MPa.
(a)

(b)

11. Uniaxial and biaxial test—Tasuji et al.: (a) principal strain–principal stress; and (b) volumetric strain–principal stress.
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The comparisons of the numerical and test results are shown in Figs. 8 and 9. As shown in the figures, the
proposed model accurately described the uniaxial compressive behavior of concrete with various compres-
sive strengths and elastic moduli. In the figures, post-peak stresses decreased more rapidly for higher
strength concrete. Unlike existing plasticity models describing the post-peak behavior by using additional
strain-softening variables, the proposed model can accurately describe such behavior without arbitrary
adjustment of coefficients.

Figs. 10 and 11 show the stress–strain relations obtained from uniaxial and biaxial compression tests by
Kupfer et al. (1969) and Tasuji et al. (1978). In the tests, r2/r3 = 0, 0.5, 1. In Kupfer et al. (1969),
f 0
c ¼ 32MPa and Ec = 29,000MPa. In Tasuji et al. (1978), f 0

c ¼ 33:9MPa and Ec = 19,600MPa.
Fig. 10(a) and Fig. 11(a) show the relations between principal strain and maximum principal stress, and
Fig. 12. Comparison with biaxial tests.

Fig. 13. Hydrostatic triaxial test—Green and Swanson (f 0
c ¼ 48:4MPa).
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Fig. 10(b) and Fig. 11(b) show the relations between volumetric strain and maximum principal stress. As
shown in Figs. 10 and 11, the proposed model accurately described the volumetric strain–principal stress
relations as well as the principal strain–principal stress relations.

Fig. 12 shows the variations in the biaxial compressive strength according to the stress ratio r2/r3
(Kupfer et al., 1969; Mills and Zimmerman, 1970; Liu et al., 1972; Nelissen, 1972; Tasuji et al., 1978).
The proposed model agrees well with the compressive strength of the biaxial compression tests except Mills
and Zimmerman (1970).

Figs. 13 and 14 show the results of the hydrostatic triaxial compression tests by Green and Swanson
(1973) and Kotsovos and Newman (1978) (r1 = r2 = r3 < 0). In Green and Swanson (1973), f 0

c ¼ 48:4MPa
and Ec = 35,163MPa. In Kotsovos and Newman (1978), f 0

c ¼ 31:7MPa and Ec = 30,250MPa. The test
results show the variations of the tangent stiffness with hydrostatic stress, which was described well by
Fig. 14. Hydrostatic triaxial test—Kotsovos and Newman (f 0
c ¼ 31:7MPa).

Fig. 15. Laterally confined triaxial test—Imran and Pantazopoulou (f 0
c ¼ 47:4MPa).
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the proposed model. This verifies accuracy of the volumetric stress–strain relation in Fig. 5(a), given by
Bazant and Prat (1988b).

Figs. 15–18 show the results of laterally confined triaxial compression tests (r3 < r2 = r1(=rl) < 0). Fig.
15 shows the test results by Imran and Pantazopoulou (1996), where f 0

c ¼ 47:4MPa and Ec = 30,000MPa.
Figs. 16 and 17 show the test results by Kotsovos and Newman (1978), where f 0

c ¼ 31:7MPa and
Ec = 30,250MPa, and f 0

c ¼ 46:9MPa and Ec = 32,000MPa, respectively. Fig. 18 shows the test results by
Li and Ansari (1999), where f 0

c ¼ 47:23MPa and Ec = 40680.5MPa. The test results showed the variations
in the principal strain–principal stress relations for a wide range of lateral confining stress (rl ¼ 0:05–1:5f 0

c ).
As shown in the figures, the proposed model describes well the strength and ductility enhanced by the
lateral confinement. Various laterally confined triaxial compression tests including the tests mentioned were
Fig. 16. Laterally confined triaxial test—Kotsovos and Newman (f 0
c ¼ 31:7MPa).

Fig. 17. Laterally confined triaxial test—Kotsovos and Newman (f 0
c ¼ 46:9MPa).
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compared in Fig. 19. The figure demonstrates the accuracy of the proposed model. Particularly, the pro-
posed model can accurately predict the enhanced compressive strength for mid- and low-strength concrete
(f 0

c < 60MPa). For high-strength concrete (f 0
c P 60MPa), the compressive strength tends to be underesti-

mated because the volumetric failure surface in Eq. (6a) does not accurately predict the volumetric plastic
strain due to the overestimation of elastic modulus for high-strength concrete.

To verify the proposed model for the proportionally increasing triaxial compression, the numerical re-
sults were compared with the test results by van Mier (1986). Fig. 20 shows the principal strain–principal
stress relations and volumetric strain–principal stress relations. The proposed model presented well the en-
hanced strength in triaxial compression. However, the proposed model overestimates the ductility and
dilatancy of concrete. Fig. 21 shows the variations of the triaxial compressive strength with the magnitude
of the hydrostatic stress in the deviatoric plane. The results given by the proposed model agreed with the
Fig. 18. Laterally confined triaxial test—Li and Ansari (f 0
c ¼ 47:23MPa).

Fig. 19. Comparison with laterally confined triaxial tests.
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test results by Launay and Gachon (1972) and the 5-parameter Willam–Warnke failure surface, which has
been thought to accurately represent the strength enhancement in triaxial compression (Chen, 1982).

As shown in Figs. 8–21, generally, the proposed model predicted well the overall behavior of concrete in
various stress states. However, the proposed model needs to be improved in several aspects. The proposed
model tends to overestimate the post-peak strength and describe more ductile behavior than the test results.
To describe the brittle post-peak behavior of concrete, slope of the descending branch of the deviatoric fail-
ure surface functions in Fig. 5(b) and (c) must be adjusted. In the proposed model, a single exponential
equation originally proposed by Bazant and Prat (1988b) was used to present both pre- and post-peak fail-
ure surface. Therefore, to more accurately describe the post-peak behavior, the post-peak failure surface
function must be separated from the pre-peak failure surface function.

Also, to accurately predict maximum strength of the high strength concrete in Fig. 19, the equation of
the elastic modulus defined as a function of the concrete strength (Ec ¼ 4730

ffiffiffiffi
f 0
c

p
(MPa)) needs to be
(a)

(b)

Fig. 20. Triaxial test—van Mier: (a) principal strain–principal stress; and (b) volumetric strain–principal stress.



Fig. 21. Comparison with triaxial test (Launay and Gachon) and Willam–Warnke 5-parameter model.
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improved to be applicable to the high strength concrete. In the proportionally increasing triaxial test shown
in Fig. 20, the proposed model overestimated dilatancy of the concrete. This results indicate that the coef-
ficient j (¼ �J 2=I21) used in Eqs. (15b) and (15c) to define the plastic potentials needs to be defined by var-
ious parameters including I1, J2, and J3.
8. Conclusions

A plasticity model using a new approach in defining the failure criteria was developed to describe the
nonlinear behavior of concrete in various compressive stress states. In the proposed model, a stress was
decomposed into three orthogonal components representing volumetric and deviatoric behavioral charac-
teristics, respectively. Three failure criteria were provided independently for the each stress component. For
this, the plasticity model using multiple failure criteria was implemented. Unlike existing plasticity models
using a single failure surface, the proposed model uses three independent failure surfaces, which allows the
behavioral characteristics of concrete in various stress states to be described more accurately. To present
dilatancy due to compressive damage, a simple non-associative flow rule was proposed.

The proposed model was verified by comparisons of its results with those of existing uni-, bi-, and tri-
axial tests. The comparisons show that the proposed model is applicable to general use because it can pre-
dict most of the test results, using basic material properties such as uniaxial compressive strength and elastic
modulus.
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